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a b s t r a c t

The paper focuses on solving a common and important problem of NIR quantitative analysis in multi-
component systems: how to significantly reduce the size of the calibration set while not impairing the
predictive precision. To cope with the problem orthogonal discrete wavelet packet transform (WPT), the
least correlation design and correlation coefficient test (r-test) have been combined together. As three
examples, a two-component carbon tetrachloride system with 21 calibration samples, a two-component
aqueous system with 21 calibration samples, and a two-component aqueous system with 41 calibration
eywords:
avelet packet transform (WPT)

he least correlation design
orrelation coefficient test (r-test)
ulti-component system

artial least squares (PLS)

samples have been treated with the proposed strategy, respectively. In comparison with some previ-
ous methods based on much more calibration samples, the results out of the strategy showed that the
predictive ability was not obviously decreased for the first system while being clearly strengthened for
the second one, and the predictive precision out of the third one was even satisfactory enough for most
cases of quantitative analysis. In addition, all important factors and parameters related to our strategy
mall-scale calibration set
ear-infrared spectroscopy (NIR)

are discussed in detail.

. Introduction

In a multi-component system, the NIR spectra of its compo-
ents usually overlap, and what is perhaps worse, the spectral
ffect of one component varies not only with the concentration
f the component itself but probably with concentrations of other
omponents because of the interaction among components in the
ystem. These phenomena often mean that a number of concentra-
ion levels are indispensable to each component and each level of
ne component needs a chance to be mixed with each level of other
omponents in the calibration samples. That is to say, a large-scale
alibration set based on the full experimental design is commonly
emanded.

Of course, not all multi-component systems need a large-scale
alibration set, in particular if concentrations of each components
n the system vary in a small range or only a rough prediction is

atisfactory so that several concentration levels of each component
n the calibration set are enough [1–4]. But for a multi-component
ystem with wide concentration range, it is impossible to make
recise predictions with this simple way because the larger the

∗ Corresponding author. Tel.: +86 731 8822577; fax: +86 731 8822782.
E-mail address: rqyu@hnu.cn (R.-Q. Yu).

039-9140/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
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© 2010 Elsevier B.V. All rights reserved.

concentration interval in the calibration set is, the more prediction
error will be.

This difficulty may not be alleviated even by common
techniques of experimental design, such as factorial design, half-
fraction factorial design, or popular orthogonal design, because
of the different situations. These techniques aiming at effectively
finding out some special points like optimal process condition for
chemical industry may not work well in our cases where the pre-
cise predictions are required within the entire concentration range
rather than just near a certain concentration point. Furthermore,
even using these designs the number of calibration samples is usu-
ally still large, for instance, with orthogonal design at least 400 (202)
samples are demanded for a multi-component system when each
component needs 20 concentration levels, respectively (a moderate
requirement for NIR quantitative analysis).

In our former research [5], an improved method based on ran-
dom experimental design, discrete wavelet transform (DWT) and
correlation coefficient test (r-test) has been suggested to cope with
the problem. The method works very well in some cases, such as

carbon tetrachloride system where the NIR information is abun-
dant, but “is not enough satisfactory in most cases” like aqueous
system where the NIR information is scarce. Therefore, “other
experimental and/or chemometrics improvement should be taken
further” [5].
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Fig. 1. WPT decomposition.

This paper is just one of follow-up attempts. Its purpose – reduc-
ng the size of calibration set without at the price of predictive
recision for NIR quantitative analysis in a multi-component sys-
em, and major idea – extracting NIR features merely related to one
omponent but irrelevant to all other components in order to con-
truct a multivariate calibration model for the component, are the
ame as the former research, but it tries to improve the experimen-
al design and replace the DWT with WPT for achieving the purpose
etter.

. Theory and algorithm

.1. Wavelet packet transform (WPT)

Discrete wavelet transform (DWT) decomposes a signal in time
omain into a series of wavelet coefficients (namely, approxima-
ion coefficients and detail coefficients) in a new time-frequency
pace. Consequently, some features inconspicuous or overlapping
n the initial domain might become obvious or separate in the new
pace [6,7]. One major shortage of DWT is that there is lower fre-
uency resolution for higher frequencies, and lower time resolution
or low frequencies, because only lower frequencies are decom-
osed further. This made DWT be suitable for most signals, but for
smooth signal like NIR spectra, sometimes it is difficult for DWT

o provide both appropriate time resolution as well as frequency
esolution simultaneously. In order to overcome this problem WPT
8,9] has been developed. The fundamental of WPT is largely sim-
lar to that of DWT except that the part of higher frequencies is
lso decomposed continuously. Therefore, WPT is more flexible to
alance the time resolution and frequency resolution than DWT,
nd accordingly extract features better or separate the overlapping
nformation more effectively from the original signal in some cases.

Fig. 1 succinctly describes the procedure of WPT decomposi-
ion from a standpoint of signal processing. At first an original
ignal is decomposed into two parts – lower frequencies and higher
requencies – on the first decomposition level. In the step, the infor-

ation in lower frequency part is transformed into approximation
oefficients (A1), while other information in higher frequencies is
epicted by detail coefficients (D1). Then, the part of higher fre-
uencies as well as the part of lower frequencies is decomposed
espectively on the second decomposition level. This procedure can
e carried out up to the maximum decomposition level.
.2. Treating NIR spectra with WPT

The same WPT procedure can be conveniently implemented for
NIR spectrum as long as the time domain is replaced by the wave-

ength (or wavenumber) domain. In fact, WPT has been applied
1 (2010) 799–804

to NIR analysis, such as transfer of calibration model [10], classifi-
cation [11], signal denoising, correction or database compression
[12,13], and a few reports were also concerned with the applica-
tion of WPT to multivariate calibration [14]. But to our knowledge,
little effort has been made to study the purpose mentioned in the
introduction section of the paper with WPT.

In the view of information, the information contained in the
original signal is equal to A1 + D1, A1 + AD2 + DD2, AA2 + DA2 + D1,
or AA2 + DA2 + AD2 + DD2 in Fig. 1. That is to say, an original sig-
nal could be decomposed in different ways through WPT, and
consequently it is necessary to find an optimal decomposition
mode (namely, wavelet packet decomposition tree) in terms of a
convenient criterion. In general, Shannon entropy that describes
information-related property of the signal is chosen as the criterion.
The best decomposition tree is the one with minimum entropy, or
in other words, the one whose regularity or information approaches
the maximum.

Finally, since WPT transforms a signal linearly from its original
domain to a new domain without prejudice, it is not necessary to
reconstruct the original signal with processed wavelet coefficients,
and the multivariate calibration model could be built between the
concentrations of components and these coefficients.

2.3. Criterion for variable selection and the least correlation
design

After WPT, all information of a NIR spectrum is transformed into
a series of wavelet coefficients. Now what we need is to deter-
mine which coefficients are related merely to the concentration of
a particular component, while insusceptible to the concentration
variation of all other components. Such coefficients can be used
as suitable variables to build a multivariate calibration model for
predicting the concentration of this component. A variety of chemo-
metrics methods have been developed to select suitable variables
for model construction, from stepwise regression analysis (SRA)
[15], uninformative variables elimination (UVE) [16–19], genetic
algorithm (GA) [20–22], simulated annealing algorithm (SAA) [23],
interval partial least squares (iPLS) [24], to moving window partial
least squares regression (MWPLSR) [25,26]. These methods work
very well in their own cases, but may not be appropriate for the
case of our concern, since they mainly focus on selecting variables
containing most information of the concerned component while
paying no special attention to the correlation between these vari-
ables selected and other components.

In our former paper [5], we suggested a method based on ran-
dom experimental design and correlation coefficient test (r-test)
to select wavelet coefficients for building multivariate calibra-
tion model. The crucial idea of the strategy is that through the
correlation coefficients between one wavelet coefficient and the
concentration of every component in the calibration set we could
determine whether the wavelet coefficient are related merely to
the concentration of a particular component, while insusceptible
to the concentration variation of all other components. For making
the idea feasible, in calibration samples the concentration of one
component should be irrelevant to that of any other component.
Consequently, in the former research, the concentration of every
component in every calibration sample is arranged randomly.

Although this random experimental design can effectively
reduce the correlation among components to a certain degree, in
general this kind of relationship is not the least. Therefore, in this
paper, the least correlation design is proposed to supplant random

experimental design. In the least correlation design: (1) the concen-
tration of any component in one calibration sample should differ
from the concentration of this component in all other samples if
possible; (2) for the same component, the concentration interval
should be equal; and (3) in the calibration set all components have
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Table 1
Correlation coefficients between two variables when they are arranged according
to the least experimental design.

LV 2 3 4 12 15
CC 1.0000 0.5000 0.0000 0.0000 0.0000
MCC 1.0000 0.6071 0.4086 0.0902 0.0655

LV 21 24 30 40 50
CC 0.0000 0.0000 0.0000 0.0000 0.0000
MCC 0.0380 0.0321 0.0242 0.0159 0.0120

LV: level or dimension of each variable; CC: the correlation coefficient between the
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870 FT-IR spectrometer under the same conditions, i.e., resolu-
wo variables when the values of the two variables are exact; MCC: the mean of the
bsolute value of 1000 correlation coefficients between the two variables when the
alues of the two variables vibrate in the way of normal distribution.

he same number of concentration levels. With this design, not only
ould the number of calibration samples be significantly reduced,
ut it is possible to select suitable variables (e.g., wavelet coeffi-
ients) according to r-test because it is unlikely for one variable to
orrelate largely with concentrations of more than one component
t the same time. If a wavelet coefficient out of calibration sam-
les greatly correlates with the concentration of one component,
hile being obviously irrelevant to that of any other component,

t is just the variable that we are looking for. In statistics r-test is
ommonly used to determine the correlation between two vari-
bles or vectors. If |r| ≤ R0.05 (n − 2), then we think the correlation
etween them is feeble; and if |r| > R0.01 (n − 2), the two variables
re obviously related. Here, r is the correlation coefficient; R˛ can
e simply inferred from F-test: R˛ (n − 2) = {F˛ (1, n − 2)/[F˛ (1,
− 2) + n − 2]}0.5; ˛ is the significance level; and n is the level or
imension of the two variables.

.4. The number of the calibration samples required

Another crucial parameter that should be decided is the appro-
riate number of the calibration samples. From CC of Table 1, one
ould know that it is possible for the least correlation design to
ake the concentrations of two components completely irrelevant

f they both have more than three levels. For example, if all compo-
ents have 4 concentration levels in a two-component system, the
oncentration arrange according to the least correlation design is
3, 4} in the first sample, {1, 3} in the second sample, {2, 1} in the
hird sample, and {4, 2} in the fourth sample. And accordingly the
orrelation coefficient between concentrations of the two compo-
ents, namely the two concentration vectors [3,1,2,4] and [4,3,1,2],

s zero (here, {3, 4}, {1, 3}, {2, 1}, and {4, 2} are concentrations
f the two components in each calibration sample, respectively).
owever, this does not mean that four levels are enough for NIR
uantitative analysis, because of experimental errors and possible
onlinearity between concentration and spectral feature (as dis-
ussion above, the suitable variables are chosen according to the
orrelation coefficient between the concentration and the wavelet
oefficients of spectra). This could be clearly observed from MCC
n Table 1, where the exact values of concentrations are replaced
y values vibrating according to a normal distribution (the mean of
he distribution function is the exact value, and the standard devi-
tion of the normal distribution is assumed as 10,000), and MCC
s the mean of the absolute value of 1000 correlation coefficients
etween the concentrations that vibrate around their own exact
alues respectively. Therefore, 21–40 concentration levels (namely,
1–40 calibration samples) are usually needed in the proposed
trategy, for the MCC is less than 0.05, and more concentration lev-

ls (namely, calibration samples) cannot reduce MCC obviously. On
he other hand, such a calibration set is relatively small and gener-
lly necessary even for multivariate calibration model construction
n a one-component system.
Fig. 2. An overview of steps involved in data processing.

Comparing the CC and MCC in Table 1 of this paper with the MCC
in Table 1 of our former paper [5], one would discover that the ran-
dom experimental design cannot decrease the correlation between
the concentration of one component and that of another compo-
nent furthest as the least experimental design, and as a result, the
former design demands more calibration samples (30–50 samples)
than the latter one.

2.5. Overview of data processing

Firstly, 21–40 samples are prepared as a calibration set accord-
ing to the least correlation design, and a typical NIR spectrum
(usually the spectrum of the sample whose concentrations are
nearly the median of the entire calibration set) are decomposed by
a kind of discrete wavelets to find the best decomposition tree in
terms of Shannon entropy. All spectra of the calibration samples are
decomposed by the same discrete wavelet according to the same
decomposition tree. After discarding the detail coefficients of the
highest frequency (commonly resulted from the noise of spectrom-
eter) to save computing time, the correlation coefficient between
every wavelet coefficient and the concentration of each compo-
nent is obtained respectively. Then r-test is carried out to select
suitable wavelet coefficients as suitable variables for one compo-
nent. And finally based on these variables and the concentration of
the component, a partial least squares (PLS) model is constructed
in a conventional leave-one-out cross-validation way for predict-
ing the amount of the component in the multi-component system.
It is worth noting that in the above process, denoising, baseline cor-
rection and database compression have also been implemented at
the same time. The total procedure is succinctly depicted in Fig. 2.

3. Experimental

Two two-component systems, aniline–acetone carbon tetra-
chloride solution and aniline–acetone water solution, have been
studied with the proposed strategy. For each system, according to
the above least correlation design, 21 samples in which the con-
centration of every component ranged from 0.5% to 5.0% (v/v) at
intervals of 0.2250%, respectively, were prepared as a calibration
set (see Table 2), and this arrangement made the correlation coef-
ficient between concentrations of the two components are zero if
there was not any experimental error. Other 15 samples within
0.5–5.0% were prepared as the prediction set for the two sys-
tem, respectively. Spectra were all recorded with a Nicolet Nexus
tion of NIR: 4000 cm−1; number of scans: 32; range of scans:
4000–10,000 cm−1, the thickness of quartz-cell: 1 mm; and tem-
perature: 273.15 K. All spectra were difference spectra, namely,
subtracting the spectra of solvent away from the sample spectra
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Table 2
The concentrations of each component in the 21 calibration samples according to
the least correlation design.

Sample 1 2 3 4 5 6 7
Can % 4.1000 2.7500 0.5000 1.1750 3.6500 2.0750 3.2000
Cac % 5.0000 0.7250 2.3000 3.2000 3.8750 2.0750 1.4000

Sample 8 9 10 11 12 13 14
Can % 0.9500 5.0000 1.8500 4.5500 4.3250 4.7750 3.4250
Cac % 1.6250 0.5000 3.4250 4.1000 1.8500 3.6500 2.9750

Sample 15 16 17 18 19 20 21
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Fig. 3. The best decomposition tree for carbon tetrachloride solution containing
2.9750% aniline and 2.7500% acetone.

Fig. 4. The best decomposition tree for water solution containing 2.9750% aniline
and 2.7500% acetone.

Table 3
Results obtained for the aniline–acetone carbon tetrachloride system with different
significance levels of r-test.

Lower and
upper
limits of ˛

N of
aniline

RMSEP of
aniline

N of
acetone

RMSEP of
acetone

0.0001, 0.25 37 0.1049 35 0.1376
0.0100, 0.25 82 0.0741 67 0.1117
Can % 0.7250 1.6250 2.3000 2.9750 3.8750 2.5250 1.4000
Cac % 1.1750 4.7750 2.5250 2.7500 0.9500 4.5500 4.3250

an: the concentration of aniline; Cac: the concentration of acetone.

or obtaining the “pure” spectral effect of the solutes. By the way,
hese experiments are the same as our former work [5], except that
he concentration interval of each component in the calibration set
as doubled (in our former work, the concentration interval was

.1125%, and the calibration set had 41 samples), and consequently
ts calibration samples were reduced from 41 to 21.

For comparison, 100 samples of aniline–acetone carbon tetra-
hloride solution as well as 100 samples of aniline–acetone water
olution ranging from 0.5% to 5.0% (v/v) at intervals of 0.5% were
repared as other two calibration sets in terms of the full experi-
ental design, and their spectra were obtained in the same way.
Finally, the fifth calibration set with 41 water solution sam-

les based on the least correlation design was also prepared for
redicting aqueous aniline–acetone system more exactly.

All algorithms required in this paper were written with MATLAB
.0 and performed on a personal computer. The steps of the WPT
ere carried out with the Wavelet Toolbox 3.0 in MATLAB 7.0.

. Results and discussion

Informative wavebands of carbon tetrachloride system was
000–7000 cm−1 (absorbance within about 8300–8900 cm−1 of
he second overtones was relatively lower, and not considered
n the study), while 4300–4800 cm−1 and 5400–6200 cm−1 were
elected for aqueous system. Within these wavenumber ranges,
ine kinds of orthogonal discrete wavelet (db2, db4, db6, coif1,
oif3, coif5, sym2, sym4 and sym8) have been tried in the study.
heir results were roughly the same, and the db4 was somewhat
etter than other wavelets for carbon tetrachloride system, while
ym8 appeared appropriate slightly for water solution. The best
ecomposition trees of two systems are shown in Figs. 3 and 4,
espectively, which indicate that WPT is superior to DWT in these
ases, because in DWT the higher frequency part on every decom-
osition level would not be decomposed further, and the Shannon
ntropy out of DWT is definitely more than that out of WPT. By the
ay, the reason that in carbon tetrachloride system the best WPT
ecomposition mode could be carried out on more decomposition

evels might be that water made some spectral details no longer
xist in the aqueous system due to strong solvent effect and the
ntensive NIR absorbance of water molecules.

The significance levels (˛) of r-test are important in the proposed
trategy, since changing them could make the selection criterion
ooser or stricter and consequently affect which wavelet coeffi-
ients could enter into constructing PLS model as variables. A larger
ower limit of ˛ will make more variables (e.g., wavelet coefficients)
ontaining the information of one component qualified for building
he multivariate calibration model for the component, while some

ariables probably relevant to other components would be also
hosen simultaneously; in contrast, a larger upper limit of ˛ will
et rid of more wavelet coefficients related to other components,
ut at the price of losing some information of the component. This

nfluence upon the predictive ability could be seen in Tables 3 and 4,

0.0050, 0.10 64 0.0539 46 0.0832
0.0050, 0.25 59 0.0511 46 0.0824
0.0050, 0.30 52 0.0642 40 0.1036

N: the number of variables that are qualified for building multivariate calibration
model.
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Table 4
Results obtained for aniline–acetone aqueous system with different significance
levels of r-test.

Lower and
upper
limits of ˛

N of
aniline

RMSEP of
aniline

N of
acetone

RMSEP of
acetone

0.0250, 0.25 56 0.1134 50 0.1780
0.0050, 0.25 28 0.0903 37 0.1681
0.0100, 0.10 34 0.0851 41 0.1636
0.0100, 0.25 34 0.0851 41 0.1636
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in Figs. 7 and 8. From them one could know that predictive ability
0.0100, 0.30 32 0.0886 41 0.1636

: the number of variables that are qualified for building multivariate calibration
odel.

here N (the number of variables entering into constructing PLS
odel) as well as RMSEP (root mean standard error in prediction)
as more or less dependent upon the lower and upper limits of

ignificance levels. From these tables, one could also discover that
he influence of the lower limit is more obvious that that of the
pper one. This is reasonable because the upper limit determines
he irrelevance of a wavelet coefficient to one component, whereas
hrough the least correlation design it is unlikely for one coefficient
argely related to one component to be still concerned with another
omponent greatly.

According to RMSEP in Tables 3 and 4, the best lower and upper
imits of ˛ are 0.0050 and 0.25 for tetrachloride system, while in
he aqueous system the best lower limit is 0.01 and the best upper
imits is 0.10 or 0.25. This phenomenon can be explained by the fact
hat in carbon tetrachloride system there was more NIR informa-
ion, or in other words, more candidate variables than in aqueous
ystem, and accordingly there are still enough variables for multi-
ariate model construction even choosing a stricter criterion as the
ower limit. On the other hand, the difference in NIR information
f the two systems can also be reflected by their different values of
.

Finally, a comparison between the proposed strategy based on
1 calibration samples and the traditional strategy based on the
ull experimental design is demonstrated in Figs. 5–8. The spectra
f calibration samples with the later strategy were processed by

conventional algorithm: after 15-point smoothing, their second-
erivatives were used as variables directly to build a PLS calibration
odel without any other data processing. The performance of the

raditional method was evaluated with the same prediction set in

ig. 5. Predicted aniline concentrations in aniline–acetone carbon tetrachloride
ystem with the proposed strategy based on 21 calibration samples (+) and the
raditional method (·).
Fig. 6. Predicted acetone concentrations in aniline–acetone carbon tetrachloride
system with the proposed strategy based on 21 calibration samples (+) and the
traditional method (·).

terms of RMSEP, determination coefficient (R2) and relative error
(RE) as the proposed strategy.

These figures indicate that in carbon tetrachloride system, pre-
dictive ability of two methods were roughly the same, whereas in
the aqueous system solution, the proposed strategy was clearly bet-
ter. This was probably because the strong solvent effect of water
made the system more nonlinear and needed more NIR informa-
tion to correct the nonlinearity. However, the fact that there was
even less NIR information available in water solution than in car-
bon tetrachloride required more concentration levels to deal with
this case. Therefore, the full experimental design (10 concentra-
tion levels) was more incapable of coping with this problem than
the proposed strategy (21 concentration levels).

In order to confirm the discussion, our strategy based on 41 cali-
bration samples were also implemented, and results are also shown
has obviously been increased and enough for most cases of quan-
titative analysis. Furthermore, Figs. 7 and 8 show that the method
now proposed is also obviously better than our former method [5]
based on random experimental design and DWT in aqueous system

Fig. 7. Predicted aniline concentrations in aniline–acetone aqueous system with
the traditional method (·), the proposed strategy based on 21 calibration samples
(+) and the proposed strategy based on 41 calibration samples (*).
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ig. 8. Predicted acetone concentrations in aniline–acetone aqueous system with
he traditional method (·), the proposed strategy based on 21 calibration samples
+) and the proposed strategy based on 41 calibration samples (*).

hen the size of calibration set is the same (e.g., both had 41 cali-
ration samples), because the new one has more qualified variables
or multivariate calibration model construction even choosing a
tricter criterion for variable selection (in our former work, the
inimum RMSEP are achieved by 33 variables for aniline and 29 for

cetone in tetrachloride system, while 20 for aniline and 18 for ace-
one in aqueous system). This is probably resulted from two factors:
1) WPT can extract and separate spectral features of various com-
onents more effectively than DWT; (2) in the least experimental
esign, a variables largely related to one component is more likely

rrelevant to other components than in the random experimental
esign. As a result, the innovative one can predict the concentra-
ions of new samples more accurately: the RMSEP of aniline and
cetone through the former method are 0.0986 and 0.1250, respec-
ively, while with the new method they are 0.0584 and 0.0769,
espectively.

. Conclusion

The paper shows that it is possible for the proposed strat-
gy to accurately predict concentrations of each component in a
ulti-component system with a small-scale calibration set. In the

roposed strategy, the calibration set should be prepared according
o the least correlation design at first, and then their NIR spectra

re decomposed with WPT according to the best decomposition
ree. The r-test is performed to select suitable wavelet coefficients
s variables for constructing PLS models. The criterion for variable
election could be adjusted through changing the significance level
f the r-test to optimize the multivariate calibration model. In gen-

[
[

[
[

1 (2010) 799–804

eral, for the system with more abundant NIR information, a stricter
criterion could be applied and more precise predictions could be
obtained, while in the system with scarce NIR information like
aqueous system, the criterion should be looser in order to let more
variables build multivariate calibration model. Although the looser
criterion may impair the predictive precision, our proposed strat-
egy can still predict the concentration satisfactorily in most cases
with fewer calibration samples as compared with traditional one
based on full experimental design or improved one based on DWT
and random experimental design.

In NIR quantitative analysis nearly all practical samples are
multi-component systems, and in most cases, more than one com-
ponent is required for quantitative prediction at the same time.
Consequently, the strategy suggested here may make the analyti-
cal process more economical, rapid and convenient. Although three
examples provided in the paper are two-component and homoge-
neous systems, in fact, our strategy may be carried our even more
efficiently for those systems containing more than two components
or heterogeneous, since in those cases more calibration samples or
calibration samples more difficultly prepared are necessary if they
are treated with other usual chemometrics methods.
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